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SUBMERGED IN AN ACOUSTIC FLUID

M. L. BAroN, H. H. BLEICH

Columbia University, New York
dand

A. T. MATTHEWS
Paul Weidlinger, Consulting Engineer, New York

Abstract—A method is presented for determining the fluid pressure and velocity fields produced by the forced
vibrations of an elastic circular cylindrical body of finite length submerged in an acoustic fluid. A potential
theory approach is utilized in which the three potentials associated with the elastic body and the one potential
associated with the acoustic fluid are interpreted in terms of a distribution of four sets of sources of unknown
strength over the fluid-elastic body interface. For a given excitation, compatibility conditions on the stresses
and velocities on the fluid-body interface lead to the evaluation of the source strengths and the subsequent
determination of the pressure and velocity fields in the fluid.

NOTATION*

r,0,z cylindrical coordinates locating source points
P, 2 cylindrical coordinates locating field point
u, v, w longitudinal, tangential and radial displacements of the cylindrical shell
radius of cylinder
velocity of dilational waves in elastic cylinder
velocity of shear waves in elastic cylinder
velocity of sound in water
lumped source strength coefficients per unit of circumferential length
source band index
field point index
2.3 | coefficient w/c evaluated for ¢ = c,, ¢, ¢ as indicated in text; k is non-dimensional form
2.3 {  wa/c
length of cylinder
number of bands into which cylinder is divided
number of circumferential waves in the cylinder displacements
normal to a surface
pressure in fluid
expansion coefficient of externally applied normal tractions to cylinder
distance between field point and source point
distance between field point and origin, Fig. §
time
wjis Briis Vuji integral coefficients of source strengths
band width: see Fig. 2
elasticity constants of cylinder
potential function associated with velocities of acoustic fluid
potential functions associated with displacements of elastic cylinder
angle between field and source points
Py mass density of fluid
Crpy Ty O 2 ‘ .
000100 | cylinder stresses

Qogro e
=
~
9}

TRHWSF I AT
<
= Xy R

] ™

«s erb
<« =
=

* Additional symbols are defined as they occur in the text.
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D) frequency of vibration

{ slope of R, see Fig. §

Note: r or z used as a subscript for the potential functions denotes differentiation with respect to the particular
variable used.
r or z appearing as a superscript for the coefficients a,;. B,;i. 7.; denotes differentiation with respect
to the particular variable used. Dots indicate differentiation with respect to time.

1. INTRODUCTION

THis paper presents a study on the development of methods for treating the forced
vibrations of elastic bodies of revolution submerged in an acoustic fluid. Specifically,
the pressure and velocity fields which are produced in the fluid by the harmonic excitation
of a solid elastic circular cylindrical body of finite length (Fig. 1), are evaluated.

A potential theory approach is used in which the stresses and velocities in an elastic
cylinder of finite length are expressed in terms of three potential functions, each of which

T—‘ELASTIC SOLID
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Fig. 1. Geometry of the problem.

satisfies the wave equation. Similarly, the corresponding quantities in the fluid are
expressed in terms of a single fluid potential which also satisfies the wave equation.
Each of the four potential functions can be considered to be caused by a group of sources
of unknown strength which are distributed over the common boundaries of the elastic
body and the fluid surface. Conditions on the stresses and velocities at the elastic body-
acoustic fluid interface lead in general, to a system of simultaneous linear:integral equa-
tions on the unknown source strengths. For practical purposes, an approach is utilized
in which the boundaries of both the cylindrical body and the fluid are divided into a
series of bands over each of which the unknown source strengths are considered to be
constants. Consequently, the integral equations on the unknown source strengths give
rise to a system of simultaneous linear algebraic equations on the source strengths.
The coeflicients appearing in these equations are in the form of definite integrals which
must be evaluated numerically for a given geometry and forcing frequency.

The solution of the equations on the source strengths on the cylinder-fluid interface
allows the computation of the pressure and velocity fields at any point in the infinite
fluid by means of suitable integrations over the boundary sources corresponding to the
acoustic fluid.
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While the use of the potential approach for fluids is routine, it appears that the
generalization of using three sets of sources to express the field in an elastic solid, has not
been previously utilized.

To solve the coupled forced vibration problem for an arbitrary pressure distribution
on the surface of the cylinder, the exciting forces are expanded in a Fourier series in 6
around the circumference, such that each term can be treated separately. An illustrative
numerical example is given for the axial symmetric case (n = 0), i.e. the case of constant
distribution of excitation forces in 6, for the case of a cylinder with L/a = 2 and
wajc = 2-01.

2. FORMULATION OF THE PROBLEM

An elastic cylindrical body of finite length L and radius a is submerged in an acoustic
fluid of infinite extent. The cylinder is excited by surface tractions which are harmonic
in time, but which may vary arbitrarily along both the axes of the cylinder and its cir-
cumference.

The exciting surface tractions are expanded into a Fourier series in 6 and the pressure
and velocity field components are evaluated separately for each term of the series as
defined by n, the number of circumferential waves in the cylinder displacements. The
problem is formulated in two steps. First, the solid cylinder and the infinite fluid with
a finite cylindrical hole are considered separately. In each case, appropriate distributions
of simple sources of unknown strengths are applied along the boundaries, and the stress
and velocity components are derived in terms of the source strengths. Finally, the strengths
of the surface source distributions are evaluated using the conditions which require the
equality of tractions and normal velocities on the elastic cylinder-fluid surface interface.
The pressure and velocity fields in the fluid may then be evaluated by suitable space
integrations over the source distributions on the fluid surface.

2.1. Elastic cylinder

Consider a linearly elastic homogeneous and isotropic cylinder of length L and
radius «, in vacuo. The displacement equations of motion are

uVau+(i+p)VV -u = pii (1

and the displacement u is expressed in terms of its components parallel to the coordinate
axes:

u=wr0,ztk,+uvr 0z Dke+ulr, 0, z, k.. (2)
Introducing potential functions
o(r,0,2,t) = Y @,r, z)cos nb & (3)
n=0
W(r0,2,1) = 3 Wr, 2)cos nf e )
n=0

o

nr,0,z,ty = Y nfr., z)sin nf &' 5)

n=1
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the displacement components are defined as follows:

o

w(r,0,z,t) = Y. wyr, z)cos nf e (6)
n=0
or,0,z1t) = Z v,(r, 2)sin no e (7
n=1
u(r,0,z,t) = Y u,r, z)cos nf & (8)
n=0
where
wlr,2) = («p,,,+ T »/z) ©)
r Z) (_E ”n,r+Ed/n.z> (10)
r r
and
1 n?
un(r’ Z) = wn,z+|/’n.rr+F'//n,r_r_2‘/ln . (11)

Substituting equations (6)-(11) into equation (1), the potential functions ¢,, ¥, and 5,
satisfy the wave equations

2 n’
Vig,+ (k,~r-2)cpn =0 (12)
n
nZ
where
2 1o o2
2 _ Y Y2 5
Vi 6r2+r0r+(322 (152)
w w
k;=—and k, = —. (15b)
Cq (4]

The stress components may be written in terms of the potential functions:

Op = 2. 6y (F, 2)cOS NO & (16)
n=0

O,5= ). Onlr,z)sin n & (17)
n=1

0,, = Y. 0,,(r, z)cos nf & (18)

n=0
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Ogs = 3, Ogp, (T, 2)cOS nf) e (19)
n=0
Ol = Z 6,,(r, 2)sin nf ¢ (20)
0,.= Y 0, (r, z)cos nf &' 2n
n=0
where
n? n n
Ty Vltpn 2 5 Pn + 2” ‘Pn,rr —";2"7" + ;"u.r - wn,rrz (22)
2n 2n 2n 2n n? 1
Oy, = H (;f(pn - —r'(pn,r - ';f‘l/n.z"'}" T!pn,rz ~Vner ‘";‘5’?;. + ;nn,r) (23)

2n? n? 1 1 n
arz,, = H (Z(Pn,rz + _T'Iln "‘_2'11,,,,- + ll’n,rrr + _‘j]n,rr - !//n.rzz ) wn,r + '"rl‘n.z) (24)
r r r r r
2u n? n? n
CGgg, = ’(qu)u 2 (Pn) +‘;"( u,r"";'(pn +;’§wn,z"wn,rz+;ﬂn-nnn,r (25)
2n n n® n n
G, = H|— _r"(pn.z + ;wn.zz + ;3':’» - ": ‘;"n,rr - ;‘2’ !ﬁn,r “Nprz (26)

n? 1
azzn = 4 (V 1Pn— 2 (9,,) + 2;“ (‘pn.zz + lo(ln.rrz - ;:'iwn,z + ; l»I)'n,rz) (27)

To formulate the problem in terms of source distributions, consider first a function
{r, 0,z,1) = {(r, 0, 2)¢* which satisfies the wave equation

VI +k* = 0; k? = = (28)
From potential theory [1, 2], the solution of { at points P within the elastic cylinder and
on its boundary can be first expressed in terms of a distribution of simple sources and
doublets which are applied along the boundary surfaces of the finite cylinder. The value
of { at a point P can be written

ikR a(p - ikR
ff‘tRad-}—fJ‘(pa( )ds 29

where the first term represents the contribution to { which is produced by a surface
distribution of simple sources of density —d@/dn per unit area and the second term
represents the contribution produced by a surface distribution of double sources (doublets)
with axes normal to the surface and density ¢ per unit of area. The quantity R is the
distance between the field point P at which the quantity { is to be evaluated and the
appropriate source or doublet location, i, on the surface of the cylinder. Proceeding
one step further, the function { can be expressed in terms of a surface distribution of
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simple sources only, by defining an auxiliary function (' in the infinite region external
to the cylinder such that

V' +k* =0 (30)

and {’ and its first and second derivatives are finite in this region, and by setting the
doublet strength equal to zero.
As shown by Lamb [1], (Article 290), the function { at the point P may be written*

e-"“‘(ac o
{p= ~J‘JS 4nR $+ﬁ>ds 30

where {p is interpreted as the function produced by a surface distribution of simple
sources of strength —[(¢{/dn)+(¢{’/¢n’)] per unit of area. The function { and its even

normal derivatives are continuous on the cylindrical boundaries while the odd normal
derivatives on the boundary of the cylinder will be discontinuous.

LONGITUDINAL FACE BANDS

#__BAND i — DISTRIBUTEDSIMPLE SOURCES,
3 SETS AT EACH POINT OF
X  STRENGTHS :

81 cosnace'®t

END FACE BANDS %
~1 (D

HpiQ i
0 DISTRIBUTED SOURCES H0i9 5 yNna et
ON END FACE BAND o ot

=fL cosnae'

F1G. 2. Source distribution on typical band i of cylindrical boundary.

Consider therefore the solid eylinder of finite length with a distribution of simple
sources on its boundaries. At each boundary point, three separate time-harmonic sources,
each corresponding to one of the three elastic potentials ¢, cos nb, ¥, cos n# and #, sin né,
are placed. For purposes of computation, the surfaces of the cylinder are sub-divided
into N bands over which the sources are distributed with strengths which vary cosinu-
soidally or sinusoidally in # and harmonically in time (Fig. 2). The strengths of the
sources in each band on the surface r = a are considered to be constant over the coordi-
nate z, while the strengths of the sources in each band on the surfaces z =0 and z = L
are considered to be constant over the coordinate r. Finally, the sources are lumped at
the centerline of each individual band thus giving rise to a series of circular line source
distributions at locations i on the surfaces of the elastic cylinder (Fig. 3)t.

* The reader is referred to [1], p. 449 ff. for the derivation of equation (31).

t In the theory which follows, the field point P will be denoted by the subscript j and the coordinates r,
0, z, while the source point Q will be denoted by the subscript i and the coordinates 7, «, z. See Fig. (A-1) of
Appendix A.
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LUMPED DISTRIBUTION OF LINE SOURCES
IN BAND i— 3 SETS OF STRENGTHS®

Gp; COSNO et
HpidSINNK e/ @t
La; COSnoce' @t
DISTRIBUTED SOURCES ON

END FACE BAND

FiG. 3. Lumped source distributions on typical band i of cylindrical boundary.

Consider therefore the elastic cylinder with the three line distributions, shown in
Table 1, of simple sources at each of the locations i:

TABLE |
Strength of corresponding line
Elastic potential function sources at location i
®, cos nfe™ G,; cos nae'
¥, cos noe'™ H nifl COS noe'
1, sin nfe'”* L,; sin nae'”

where the complex quantities G,;, H,; and L, are the source strength coefficients per
unit of circumferential length which are to be evaluated from the conditions at the
interface between the elastic solid and the acoustic fluid.

The potential functions ¢;, ¥; and #; at a point j in the interior or on the boundary
of the cylindrical body may be written in terms of the contributions from each of the
line distributions of sources at the locations i:

0 o N s N

P; = Z Ppj = Z Z @pji = Z Z G 0ty ji COS no e (32)
n=0 n=0i=1 n=0i=1
o 20 N 0 N .

d’j = Z ‘/’nj = 2 2 Wnﬁ = Z Z Hm'aﬂnjicos n e' (33)
n=0 n=0i=1 n=0i=1
X 0 N 0 N ) .

n;= Z Nnj = Z Z Maji = Z Z LBy sin ng &' (34
n=1 n=1i=1 n=1i=1

where the complex coeflicients a«,;; and B,;; are defined by the relations

7 2n e~ kiR
Opji = —4—7;‘!‘0( R )cosnt//dtp (35)
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F 2z e'l'sz
PRt —_ 3
/irl_]l an JO ( R )COS nll/ dl// ( 6)
and
R =[(z~2)*+F +r*—2rFcos y]*. 37

The term ¢,;; refers to the contribution to the potential component ¢, at the field point
J (coordinates r, 0, z) from the line distribution of sources which are located at the source
location i (coordinates 7, a, Z).

Substituting equations (32)~(34) into equations (16}+27) and using the relations

2
Vl‘l’m“( k%+ >(pn

n2

Vivw = (~K3+5 Ju, (8)
n2

Vl"m = (—k%+72—)”n

the stresses ¢ at a field point j are written in terms of the source strengths G,;, H,; and
L,:*

o

Orrj = Z O pr il Z) COS D™

where

N Aw? n n
arr,nj = Z {Gm‘ (— 2 a,”, + 2"‘“"11) + Lm'2l“ <—'r—2ﬂnji + ;ﬂ;;:) - aHmzuﬁZf} (39)

i=1

oo
a’o-j = Z UrB,nj(r, Z) sin nfe'!
n=1

N 2n 2n 2n
O-ro,nj =HU ';1 {Gm’(—rianji - Ta;ji) + Hm'a( 2 ﬁnﬂ + n_u )
+Lni( n]l 2Bn11+ Bn;t)}

w
O,.; = Y O, .Ar, z) cos nfe'"
n=0

N w?
Orznj = U ‘ZI {Gni (2‘1;;') +H,a ( 2B — % ,.,;) + Lm( ﬁ:;:)} (41

x

Goo,j = 2, Tooumirs Z) COS nbe

n=0

(40)

where

iwt

* The superscripts on the quantities «,; and f,; represent differentiation of the integrals of equations
(35)436). e.g. &} = la,;,/0r ¢z etc.
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where

N iw? 2 2 2
GOO,nj = .';1 {Gm [ :i an11+ u( np nr nﬂ)]""Hma[%l( :ji—" ;‘z")]
+Lm[ ( ﬂn]l nﬁ;ji>]} (42)

o0

G, = 3, Oz, Sin nfe'
n=1
where
o 2n new?
Tatni = Z { n ( "1'> +H ,"a( , i T Eﬂnﬁ> +Ly; (‘ ﬂ:-ﬁ:)} (43)
and
02z, = Z Oz, nj(r z) cos nfe'et
n=0
where
l /160 wz
Ozznj = .’Zl {Gni (" cz —7 Oyt 2#&,,;) +aH,2u (— :jf — c—gﬂ:">} (44)

Substituting equations (32)+34) into equations (6}(11), and differentiating with
respect to time, the velocity components at the field point j become

o0

W, = ;0 W [T, 2) cos nfe'* (45)
b; = ; o, T, z) sin nfe'* (46)
i = ;) tiy, {1, z) cos nfe** CY))

where

al n
Whp,; = 0 .gl {Gni(a;ji) + H a(— B+ Lm'(; B ji) } (48)
X n n
U"vj = w ';1 Gm' ;anji + Hnia r n;x + Lm(ﬂ ]l) (49)
and

= lw i {Gm aflji)'*'Hnia( 2 Bnu n;)} (50)
i=1

The complex coefficients «,; and their derivatives are defined by equation (35) and
equations (51)}58) which follow:

2=/ —ik,R
Opji = . j (e——r>(1 + ik {RXr —F cos yr) cos nyr dy/ (51)
4n o R
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(T Mi)(wm R)(z—z) cos mp dy
Lnji = Z‘TE . R3 i osn
= 2x ~ikR : 2p2
" 7 e } 3(1+ik,R)+ kiR .
5 = z:cf o (T) [‘Z”ZV (’W“Ef“"*‘)*“ *”‘R’] o v

—xk;R
o = —-Z%(Z—Z)J- ( —3(1 4 ik R)+ k2R?Yr —F cos ) cos mjr dy
(4]

- f—'{Z——Z) —zk;R
GH = ———— {15(I+zf< R)—6k?R? —ikiR3)(z—2)?
dn ),

R’
—ikiR
( >[~«9(1+ik1R)+3k§R2}}cos g dyr

.“("1

= 2n
oy = __j {(iks—)[ 31 +lk,R)+k§R2](1‘—~fCOS ¥)?

e~ik1R
+( FE )(1 +ik1R)}cos ny dys

zrr ¥ " e_zk K 31 k R kZRZ TR - 2
anl = “ZEJ‘O ( R )[ (1+ikR)+ ]+ R )(r——rcosn//)

x [15(1 + ik, R)— 6k2R? — ik3R*)M(2 — 2) cos my di

— ik R
Az = —MJ (r—Fcos d/){(e )[15{1 +ik,R)—6k?R* — ik3R3*)(z—z)?

ik\R
+<€ RS )[“3(1 +ik1R)+kfR2]} cos my dys

(53)

(54)

(55)

(56)

57

(58)

The corresponding derivatives of the complex coefficients f,; are evaluated by replacing

k, = w/c; by k, = w/c, in equations (51)(58).

2.2. Acoustic fluid

Consider the routine case of an acoustic fluid of infinite extent with a cylindrical cavity
of radius a and length L. The motions of the fluid are governed by a velocity potential

D(r, 0, z, 1),
D(r,0,z,t) = Y @,(r,z)cos nhe'*

n=0

which satisfies the wave equation,

2 n’?
Vl(b,“‘}' k%”‘ﬁ)@n ‘-3’—0
where

w
C

ky =

59

(60)

(61)
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The .velocity and pressure components at points in the medium are given by the
relations:

v, = —%)— -y 6—(I)ia(iacos nbe' (62)
n=0
0D & on®yr, z) feot
=~ 5= "Zl ; sin nfe (63)
6 x .
v, = (I) Z 6(I>,,(r cos nfe' (64)
o
P=pya = Z piw®,(r, z) cos nfe' (65)

n=0

.Proceeding exactly as in the case of the finite elastic cylinder, the problem is formulated
in terms of a distribution of simple sources on the internal boundaries of the infinite
fluid, z = 0, L and r = a.* At each location i, a line distribution of simple sources of
strengths C,; cos nae'™, corresponding to the potential function ®, cos nfe’™, is placed.
The source locations i are the same as those which were used in the case of the finite
elastic cylinder.

The potential function ®; at a point j in the interior or on the internal boundary of
the fluid can be written in terms of the contributions from each of the line distributions
of sources at the locations i,

x ) N o« N
q)j = Z (D'U = Z Z q)llji - Z 2 Cniynji cOS noeiw'. (66)
n=0 n=0i=1 n=0i=1
The complex coefficient y,;; is given by the relation
= 2n —ik3R
F et
Vuji = e [ R ] cos ny di. 67)

Substituting equation. (66) into equations (62)65), the pressure and velocities at a field
point j in the fluid are written in terms of the source strengths C,;:

On the surface r = a

N
Oppj = Z Y. p;wiCoy, s cos nfe™ (68)

n=0i=1

On the surface z = O and z = L

a.
O22,j = Z
"0

p  WIC Y i COS nOe'! (69)

“Mz

I|Mz

. X

C.iYnji €OS nfe'* (70)

* This can be done provided @ approaches a form Ce *R/R as R — ., i.e. that there are no sources of
sound at infinity.
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Ee N n . .
b = Zl .Z‘l C,,,-;y,,j,. sin nfe™! (71)
%6 N .
= — ZO ‘; C,ivZ; cos nfe™ (72)

The complex coefficients y,; and y;; are obtained by substituting k; = w/c for
k, = w/c, in equations (51) and (52) respectively.

2.3. Relations on the interface between the fluid and the elastic cylinder
Let the cylindrical shell be excited by the time-harmonic boundary tractions

pe

Op = Z Prr.n(rs Z) COSs nOeiw‘ onr=a (73)
n=0

0.,= 3 Po,rz)cosnfe onz=0andz=1L (74)
n=0

as shown in Fig. 4.

Ozz= 2 Py njCOSNOE®!

F1G. 4. Applied tractions on typical bands.

The equations stating the equality of the tractions and velocities at the fluid—cylinder
interfaces can be written at each field point j on the surfaces.* Defining the coefficients
P,.; and P,, . as the expansion coefficients of the externally applied normal tractions
at the field points j on the indicated boundaries, the conditions on the tractions and the
normal velocities are given below at each point j:

Point j on the surface r = a

Orrmjshell = Oprnjciuia + Prronj (75)
Orzmjshent = 0 (76)
Org,njshent = 0 (77)

W, jshell = W, j¥luid (78)

* The points j are taken at the same locations i as the line sources.
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Point j on the surfaces z=0and z = L

O znjshell = Uzz,njfluid+Pzz.nj

Crzmjshell = 0
azﬂ,njshell =0
Uy jshett = Un,jfluid-

(79
(80)
(81)
(82)

The stress components o,,, 0,4, 6,, and 6,4 are set equal to zero in the above equations
since the fluid is assumed to be inviscid and hence not capable of sustaining shear stresses.
Substituting the appropriate expressions from equations (39){50), equations (68)72)
and equations (73) and (74) into equations (79)~82), the equations may be written in

terms of the source strengths G, L,,, H,; and C,;:

On the surface r = a
N

Aw? n n
Z { Gni ( anjl + 2:uanﬂ> + Lm'2.u<_ﬁﬁnji +;ﬂ;]l> - ana)B;;fzu}

i=1 r=a

= Z p]wl.Cni’Y,,j,"{’Prr,nj
i=1

N o?
Z { m(zanﬂ)",— Hma< 2 ;jlz_"— nﬂ) + Lm 'l}l) =0
i=1 Cz r r=a
ud 2n 2n
:;1 { Gni(ﬁanﬂ - Ta:lji) + I-Ini ( 2 ﬂn}l n_]l)
+Lm< nﬂ 2ﬂn11+ ﬁn;t)} =0

N
{Gmanﬂ+Hma( ﬂnﬂ)+Lm< ﬁn]t)} = - Z Cﬂiy:lji
i=1

On the surfaces z = 0 and z = L

N ;th
'=21 {Gni < Cz an;: + 2”'“"11) + aHni2u< :jf n}l)}

N
= Z p/wiC,,,-}',.j.-'f'Pzz,nj
i=1

2
£ {Gutoatirt (<2857 -2 )+ 1 285 = 0

N 5 :
i;;{G"i<_ :l nﬂ)"‘Hma(z:l ,,,l n zﬁn}l)+L"'( ﬁn;:}

N
Z iw{Gni(afnji)'}'Hnia( 2 ﬂn}l nJ:)} - - Z Cniy:ji'

i=1

Mz

i=1

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

The set of simultaneous non-homogeneous linear algebraic equations, equations
(83)«90) may be solved for the complex source strength coefficients G,;, L,;, H, and
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C,; at each source location i. A brief description of the solution of these equations for
both the real and imaginary parts of these coefficients is given in Section 4.

Once the fluid source coeflicients C,; are known, the pressure and velocity fields in
the fluid can be evaluated by direct integration over the fluid sources ®.

2.4. Evaluation of the fluid pressure and velocity fields

The component of the fluid potential corresponding te the integer.n, at a field point
J in the infinite fluid medium is expressed in terms of the boundary sources on the fluid
surfaces r = a, z = 0 and z = L by the relation

N
®Q,; = Y Cpipnji COS nbe™". 91

i=1
The complex coeflicients y,;; are given by equation (67); the quantity R is given by.
equation (37) and the values of the complex coeflicients C,; are obtained from the solution
of the system of simultaneous equations, equations (83}+90). Substituting equation (91)
into equation (65), the pressure component p,(r, 9, z, t) at a point j in the medium is

N
Proj _ Y iwC i cOS nbe' . 92)
Py i=1
The velocity field components W, . ¢,; and u,; may be evaluated from equations

(70)}(72) respectively.

It should be noted that the pressure and velocity components which are fouad from
equation (92) and equations (70}+(72) are complex quantities. The magnitude and phase
of these quantities may then be computed as shown in Section 4. A considerably simplified
asymptotic expression for the pressure p,; in the fluid at large distances R from the
cylindrical body, i.e. the far field pressures in the fluid, can be derived in terms of the
fluid source strength coefficients C,; and a prescribed distance and slope angle, R, and
¢ respectively, as shown in Fig. 5.

<p"_j> i lw cos nf) explicf(t — Ro/c)]
far field

Py

2R, ;
It should be noted that once p, ; has been evaluated from equation (93) for a particular

point P, (with a specified value of R, and {), it can easily be evaluated for any point P;
which lies on the line of R,, by changing the scale factor

N
C,i7 expl(ik;Z sin cf)J,,(k3f cos {). (93)
=1

exp(ioRg/c)
R,
in the equation for the pressure. The use of equation (93) therefore greatly simplifies the

numerical computation of the far field fluid pressure since it eliminates the numerical
computation of the y,; integral coefficients for each point j in the fluid.

3. AXI-SYMMETRIC CASE, n.= 0

For the axi-symmetrical case, n = 0, the 0 dependence of the potential functions
vanishes.
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FAR FIELD APPROXIMATION:

P(rez}

-Fi1G. 5. Far field fluid pressure evaluation.

The displacement components at points in the elastic cylinder can be expressed in
terms of two potential functions only

O(r, z, t) = Dyr, 2)e' (94)

'l’(r, 2, t) = lpo(r, Z)eiw’ . (95)

which satisfy the wave equations, (12) and.(13), with n = 0.

Proceeding exactly as in the general case, the problem is formulated in terms of two
separate line distributions of simple sources on the surface r = g and z = 0 and L, of
the elastic cylinder.

The potential functions ¢;; and ,; at a point j-on the interior or on the boundary
of the cylindrical body are written in terms of the contributions from each of the two
line-distributions of sources at the loecations i:

N
(I)Oj = z Gm%ﬁe'w' (96)

i=1

I

N
Y. Hoafye 97

i=1

A —ikiR
r e
= 98
%osi 47:_[ ( R )dl// (98)

0

Yo,

where
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= (277 ~iksR
ﬂOji = _{;J (e R )d‘// (99)

0

and R is given by equation (37).

The stress and velocity components at each field point j are written in terms of the
complex source strengths G; and Hy,; by setting n = 0 in equations (39}(50), respectively,
and noting that Lg; = 0.

For the acoustic fluid, the problem is formulated, as in the general case, in terms of
line distributions of simple sources on the surface r = a and z = 0 and L, of the fluid.
A single line distribution of simple sources of strength Cge', corresponding to the
elastic potential function ®ye'" is required at each location i. Hence,

N
®y; = Z Cof/o;.“’iwr (100)
i=t
where the complex coefficient y,j; is obtained from equation (98) by substituting k; for
k,. The stress and velocity components at each field point j are obtained by setting
n = 0 in equations (68)72), respectively.

The conditions on the source strengths G, H,,; and C; on the cylinder-fluid interface
are given by equations (83)-(90) in which n is set equal to zero and L,; = 0. This set of
simultaneous nonhomogeneous linear algebraic equations may be solved for the co-
efficients G;, H,; and Cy; at each source location i on the interface. Once the fluid source
coefficients C,; are known, the pressure and velocity fields in the fluid are obtained by
setting n = 0 in equation (92) and equations (70)+72), respectively.

The asymptotic expression for the far field pressure p, ; is obtained by setting n = 0
in equation (93), i.e.

o . — N
(‘l‘ﬁ) _ _oexpliolt =Ro/O)] o (o - o oikyz sin O o(k 7 cos ). (101)
Py /far field 2R, . i=1

4. COMPUTATIONAL PROCEDURES

The computational effort required for the application of this method to problems of
practical interest is considerable, and requires the use of high speed electronic computing
equipment. The computations are conveniently divided into three major parts:

(a) Evaluation of the coefficients a,, B,; and y,; and their space derivatives, using
equations (35), (36) and equations (51)}58).

(b) Solution of equations, equations (83)«(90) for the source strength coefficients
G, H,, L,; and C,;.

(c) Evaluation of the pressure and velocity fields at desired points in the infinite
fluid, equations (92), (93) and equations (70){72).

The major problems are concerned with the computations required for Case (b) in
which large systems of linear simultaneous algebraic equations on the source strength
coefficients must be solved. For practical purposes, it is convenient to evaluate both the
complex coefficients «,;, B 7, and the complex source strengths G,;, H,;, L,; and C,;
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in terms of their real and imaginary parts. Consequently, if the cylinder-fluid interface
is divided into N bands, sets of 8N (n # 0) and 6N (n = 0) simultaneous equations are
obtained on the real and imaginary parts of the source strength coefficients. In each case,
however, the computations can be reduced to the evaluation of a number of systems of
2N simultaneous equations.

5. NUMERICAL EXAMPLE—AXI-SYMMETRICAL CASE n =0

For illustrative purposes, the following axi-symmetrical problem is solved. An elastic
cylinder of radius a and length L, immersed in an infinite acoustic fluid, undergoes an
electromagnetically induced time-harmonic uniform strain, e,, = g/, in the axial
direction, while the radial and circumferential strains ¢, and &g are kept equal to zero
(Fig. 6(a)). By superposition, the pressure field that is produced in the fluid by the straining
of the cylinder will be equivalent to the fluid pressures produced by a set of fictitious
surface tractions which are applied to the solid cylinder in the ratio

_ A v
TA42u 1w

(102)

O-"

UZZ

To illustrate this, consider first, the cylinder under the action of applied surface
tractions a,, and o,, (Fig. 6(b)). These tractions are chosen so as to bring the cylinder

Eapm o Ot
e S——————=

Err = Eop= O

b e e

(a)

]m.-—(xw)e.e“‘“

O'r,--)«E.ei“t
o

™
(v)
P“' (v pygelet
Or¢ = €T
ey pretin-

T

(¢)

F1G. 6. Illustrative problem.
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back to its original unstrained state, 1.e.

fwt

G,y = —AEge
) (103)
0. = —(A+2p)eoe™.

Finally, a set of surface tractions which are equal and opposite to those of equations
(103) are applied to the cylinder (Fig. 6(c)).

The superposition of the three states of stress shown in Fig. 6 indicates that the
pressure field which is produced in the fluid by the uniform straining of the cylinder,
€., = €', is equivalent to that which is produced by the fictitious surface tractions of
Fig. 6(c), namely

g, = Agge™
) (104)
0., = (A+2u)eee™™.

The following parameters are used in the numerical example:

(1) Elastic cylinder (2) Acoustic fluid
L =2a w, = 62:5 Ib/ft?
v=gie i=p c3 = 5000 ft/sec

4 = 12x10° Ib/in?
w = 0-2833 Ib/in3
(3) Symmetrical loading
igg = 103 Ib/in?
P,.o; = 103%™ j on the surface r = a
P..o; = 3x10%"" jonsurfacez=0and z = L

With the input values chosen, the propagation velocities of the pressure and shear
waves in the.elastic body become respectively

P21 3
o= 2E AR OE8 18 460 ftsec
P W
ey =2 =8 _ 10,660 fi/sec
P w

c3(fluid) = 5000 ft/sec.

The following values of the nondimensional parameters k, = wa/c, were used in the
computations:

k, = 0-5444
k, = 09425
ky = 2:0100

For example, a possible combination of forcing frequency w and cylinder radius for
which the numerical results would apply is @ = 400c¢/s and a = 4 ft.

Numerical computations for the absolute value of the pressure p, ; have been carried
out along rays ranging from 0°(223°)90° as shown in Figs. 7 and 8. In each figure, the
lines of constant pressure in the fluid are shown.

The results which are plotted have been derived using equation (92) and checked
beyond R, = 20« by the asymptotic pressure formula, equation (101).



Vibrations of an elastic circular cylindrical body 21

PSI

PRESSURES

Fi1G. 8. Fluid pressures; Ry/a > 10.

6. CONCLUSIONS

A method for the evaluation of pressure and velocity fields in an infinite acoustic
fluid, due to the harmonic excitation of an elastic circular cylindrical body of finite
length has been presented in the preceding sections. The excitation of the cylinder, while
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harmonic in time, may be arbitrary in both 6 and z. For arbitrary variations of surface
tractions, the tractions may be expanded into Fourier series in 6 and the response
evaluated for each component n of the series.

The present theory may find useful applications in evaluating the pressure fields in
a fluid due to the harmonic excitation of large transducers. In such transducers, changes
of strain are produced electromagneticalty. This situation can be treated generally by
the introduction of equal and opposite fictitious tractions at the cylinder-fluid interface.
These forces are selected such that one set just cancels out the electromagnetically
induced strains; the pressure field produced by the other opposite set of forces is then
determined by the methods of the present paper. To illustrate this approach, a numerical
example for the case of an axisymmetrical excitation (n = 0) has been solved in Section 5
for a steel cylinder in water.

A second possible area of applications for the present theory is on problems involving
the evaluation of the fluid pressures produced by the harmonic excitations of submerged
thick cylindrical shells of finite length. The extension of this work to more complex
geometries is also under way.
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Zusammenfassung—Eine Methode wird ausgefiihrt zur Bestimmung des Fliissigkeitsdruckes und des Gesch-
windigkeitsfeldes das durch erzwungene Schwingungen ecines elastischen, in ein akustisches Medium
eingetauchten Kreiszylinders endlicher Linge hervorgerufen wird. Das vorgeschlagene Verfahren macht von
der Potentialtheorie Gebrauch bei dem drei Potentiale des elastischen Korpers und das cine Potential der
Fliissigkeit als eine Verteilung von vier Quellengruppen gedeutet werden. die mit unbekannter Stirke an der
Berithrungsfliiche des festen und fliissigen Korpers wirken. Fiir gegebene Erregung liefern die Vertriglichkeits-
bedingungen fiir Spannungen und Geschwindigkeiten an der Beriihrungsfliche die gesuchten Stirken und
gestatten die Bestimmung des Druck- und Geschwindigkeitsfeldes in der Fliissigkeit.

A6crpakT—TIpencTasned METOA ONpeACieHUs MOJIER OABJIEHHA XHAKOCTH M CKOPOCTH, NMPOM3BEACHHBIX
BBIHYXICHHBIMH KOMEOaHHAMM 3NACTHYHOTO KPYINIOrO LMIMHAPHYECKOTO TeNa ONPENE/CHHON UTHHBLI,
HOTPYXEHHOTO B aKyCTHYECKYIO XHAKOCTb. YHOTpebaseTcs noaxon co CTOPOHEI T€OPHH HNOTEHLUHA/IOB B
KOTOpPO# TPH NMOTEHUHANA CBA3AHHAIE C MACTHYHBIM TENOM M OJHH NMOTEHLMAN CBA3AHHEIN C akycTHYeCKOMH
KHIKOCTHIO HCTONKOBHBAIOTCA B BHAE PACTIPENEICHHS YETHIPEX IPYIN MCTOYHHKOB HEM3BECTHON CHIILI Ha
MOBEPXHOCTH DPa3fieNa XHAKOCTH M ACTHYHOIO Tena. [ns AaHHOTO BO3GYXKACHHS, YCNOBRS COBMECT-
MMOCTH Ha HAarpy3kax M CKOPOCTH HAa NOBEPXHOCTH Pa3jeNa XHAKOCTH H 3MACTHYHOTO TeJIa MPHBOJAT K
NOCNENYIOIEMY OTIPEAENEHHIO TONeH JABIEHHs] H CKOPOCTH, HMEIOILMX MECTO B XHIKOCTH.



